

Masterarbeit

Stickoxid-Dosimetrie mit kaltabgeschiedenen KMnO₄-imprägnierten Al₂O₃-Schichten

Marc Schmitz, M.Sc.

Zusammenfassung

NO_x-Dosimeter eignen sich zur Überwachung der Stickoxidgrenzwerte in der Umgebungsluft. Als sensitives Funktionsmaterial zur Einspeicherung von Stickoxiden kann KMnO₄-imprägniertes Aluminiumoxid eingesetzt werden, dessen elektrische Eigenschaften sich abhängig von der Dosis oder der Menge an sorbiertem NO_x verändern. Zur Schichtabscheidung wurde in bisherigen Arbeiten das Siebdruckverfahren verwendet.

In dieser Arbeit wurde die Funktionsschicht über die Diskontinuierliche-Pulver-Aerosol-Depositionsmethode (DPAD) hergestellt und damit eine dünne und nahezu dichte Funktionsschicht realisiert. Hierfür wurden drei verschiedene, mit KMnO₄-imprägnierte, Al₂O₃-Pulver (Typ A, Typ B, und Typ C) verwendet und zudem siebgedruckte Funktionsschichten hergestellt. Ziel der Arbeit war es, die dosimeterartigen Eigenschaften von dünnen und dichten DPAD-Funktionsschichten mit porösen Siebdruckschichten zu vergleichen.

Die Sensoren wurden dafür elektrisch mittels Impedanzspektroskopie in Abhängigkeit der NO_x-Zugabe charakterisiert. Das Dosimetersignal, die relative Widerstandsänderung, bei stufenförmiger Zugabe verschiedener NO_x-Dosen und -Konzentrationen wurde in Abhängigkeit von der Sensortemperatur ermittelt.

Abhängig vom Typ des Ausgangs- Al_2O_3 -Pulvers und der Schichtherstellungsmethode ergaben sich unterschiedliche NO_x -Dosimeter-Eigenschaften, die durch die Schichtherstellung und das Al_2O_3 -Ausgangspulver beeinflusst wurden.

Während sich für große NO_x-Konzentrationen und NO_x-Dosen die per Siebdruck hergestellte Schicht aus Typ C-Material am besten eignet, ist die Dosimeter-Empfindlichkeit für kleine NO_x-Dosen bei Siebdruck-Typ A und -Typ B-Pulver erhöht. Die DPAD-Typ C-NO_x-Dosimeter zeigen eine hohe Signaländerung bei kleinen Konzentrationen und zeigen im Bereich kleiner NO_x-Dosen eine bessere Auflösung als die Siebdruck-Typ C-Sensoren. Die DPAD-Typ B- und DPAD-Typ C-Dosimeter weisen im Bereich kleiner NO_x-Dosen ein geringes Signal auf, zeigen jedoch bei höheren Dosen ein lineares Dosimetersignal, wohingegen DPAD-Typ C bei hohen Dosen bereits eine Sättigung zeigt.

Um einen großen NO_x -Messbereich abzudecken, könnte man sich eine Kombination aus einer Siebdruckschicht und einer DPAD-Schicht vorstellen.

Kontakt:

Dr.-Ing. Daniela Schönauer-Kamin Telefon: +49 921 55 7401

E-Mail: funktionsmaterialien@uni-bayreuth.de

www.funktionsmaterialien.de